Connect with us

Science

Europe Will Witness the Historic Ariane 6 First Launch

Published

on

Europe is about to witness a historic event as the Ariane 6 launch rocket gets ready for its first flight on Tuesday.

On July 9, between 2:00 and 6:00 p.m. Eastern (1800 and 2200 UTC), the Ariane 6 is scheduled to lift off from the Kourou launch pad in French Guiana. The launch is being broadcast live on ESAWebTV by the European Space Agency (ESA).

With two solid boosters, the 56-meter-long “62” version of Ariane 6 will be used on its first launch. The Vulcain 2.1 engine, which runs on liquid hydrogen and oxygen, powers the main stage. This is an improvement over the primary Vulcain engine of the Ariane 5.

The larger “64,” which has four solid rockets, can lift up to 21.6 tons, whereas the 62 can only take up to 10.3 tons to low Earth orbit. However, just a few small satellites and experiments from businesses, research centers, universities, and young people will be carried on the inaugural trip.

Years of delays are followed by the first rollout. The launcher is intended to replace the aging and now-retired Ariane 5 with a less expensive model. Originally, 2020 was supposed to be the rocket’s first flight date.

The maiden launch of Ariane 6 will be a crucial and high-pressure operation for launch service provider Arianespace, European Space Agency (ESA), prime contractor ArianeGroup, and other stakeholders due to the launcher’s delays, a backlog of thirty orders, and the crises surrounding European access to space.

The European Space Policy Institute’s director, Hermann Ludwig Moeller, told SpaceNews that “For Europe it is mission critical to again have an autonomous access to space,”

By doing this, the beginning of its own institutional missions would be ensured. According to Moeller, these comprise the EU Space Programme, EUMETSAT meteorological satellites, ESA missions, security and defense-related operations, and operator-related commercial programs.

Thirteen launches for Ariane 6 are already scheduled, eighteen of which are for Amazon’s Kuiper constellation.

There is a sense of danger since, contingent upon a successful flight, Ariane will shortly increase from six to nine trips annually.

On the other hand, test launches frequently fail. Reducing expectations, ESA director general Josef Aschbacher stated in May that  “Statistically, there’s a 47% chance the first flight may not succeed or happen exactly as planned,”

Furthermore, according to Moeller, “space applications such as improved weather forecasting, banking and timing services, secure communications, 5G and Internet, civil and economic security, including protection of critical infrastructures in transport, energy, digital, and defense applications” will benefit from the operational launcher.

“Ariane 6 is essential and a prerequisite for the implementation of a broader European space policy and strategy.”

Moeller responded, “The main impact in our view is the fact that the focus on the launcher crisis has made it difficult to advance on other dossiers and in particular on the accelerated use of space, at a time when other space powers and commercial entreprise do exactly that, in a race.”  when asked how the expendable Ariane 6 and its extensive delays have potentially cost the European space sector.

“And it is not the Falcon 9 launcher that is most visible in the debate, but the Starlink communications constellation, known to every taxi driver. It is not too late for Europe to catch-up, and IRIS2 is one step in that direction. However, the window of opportunity is now and it will close.”

Due to the unanticipated pause between Ariane 5’s retirement and Ariane 6’s launch, ESA had to launch the EarthCARE satellite in May of last year and its Euclid space telescope on a Falcon 9.

Notably, in late June, European weather satellite operator Eumetsat revealed that one of its geostationary weather satellites had been transferred from an Ariane 6 to a Falcon 9. European space authorities were taken aback by the decision, which Eumetsat claims was made for complicated but unclear reasons.

Europe is also seeking to diversify its launch services, in part as a reaction to its access to space dilemma. The commercialization of the ESA-developed Vega by prime contractor Avio was made possible by a resolution passed by the ESA Council on July 5.

Four micro- and mini-launchers from European launch service companies, Isar Aerospace, MaiaSpace, PLD Space, and Rocket Factory Augsburg (RFA), were also granted permission by the Council to utilize the French Guiana spaceport.

According to an ESA statement, “These decisions set the stage for more diverse European launch services in an increasingly competitive environment.”

The company’s stance is that the EU and ESA should acquire the service, and the private sector should develop rockets in the future. According to RFA, “Post Ariane 6 launch service development and operation shall be led by private industry,” Meanwhile, the company expressed excitement for the launch of Ariane 6 and called it “a great pan-European project.”

Moeller pointed out that Europe must look past the initial release. “By July 10, the focus in Europe needs to shift beyond launchers to the accelerated use of space, in all domains and to the benefit of the entire European economy, for the prosperity of its citizens, the competitiveness of its industries, as well as for the protection of global peace and inspiration of future generations.”

Science

SpaceX will begin a busy year for moon missions this week with the launch of two private lunar landers

Published

on

SpaceX will begin a busy year for moon missions this week with the launch of two private lunar landers

A busy year of lunar missions will begin this week with the launch of two private lunar landers on the same rocket.

The SpaceX Falcon 9 rocket that will launch the missions has a six-day window starting early Wednesday morning (Jan. 15). Liftoff from Launch Complex-39B at NASA’s Kennedy Space Center (KSC) in Florida is set for 1:11 a.m. EST (0611 GMT).

Both landers will be transported by Falcon 9 to Earth orbit, where they will start separate journeys to the moon. The goal of Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, Ghost Riders in the Sky, is to transport scientific payloads to the moon’s surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program. Resilience, the second lander, is the second mission that the Japanese corporation ispace has undertaken in an attempt to land on the moon. Blue Ghost will be followed by iSpace’s Mission 2, which will take almost four times as long to finish.

In order to set its course toward the moon, Blue Ghost will orbit the Earth for 25 days before an engine fire. If all goes according to plan, the lander will autonomously land in Mare Crisium (“Sea of Crises”) after another 20 days, which includes 16 days in lunar orbit and four days in transit, to start two weeks of lunar science.

About five hours after nightfall on the lander’s site, Blue Ghost’s 60-day journey from Earth to the moon would come to an end. Before shutting down, the spacecraft will use its remaining battery power to take a picture of the lunar sunset.

After launch, the Resilience lander is expected to settle four to five months later on a significantly slower trajectory. Based on the lessons acquired during Hakuto-R Mission 1, ispace’s second mission, Resilience, has been outfitted with both software and hardware enhancements. In April 2023, the mission’s attempt to land was unsuccessful due to a malfunctioning altitude sensor on the lander, which caused a crash on the lunar surface. The mission had successfully reached lunar orbit.

With Hakuto-R Mission 2, ispace is adopting a methodical approach, outlining a 10-step list of milestones Resilience will accomplish en route to the moon, along with an additional checklist for objectives accomplished after a successful lunar landing. In the northern hemisphere of the moon, the lander is headed for Mare Frigoris (Sea of Cold), where it will start surface operations. As part of a contract with NASA, the lander will deploy an onboard microrover called Tenacious to gather a sample of regolith, or moon dust.

Future months will see more moon missions

Another lunar laundering operation, this time from the only private corporation to land on the moon so far, will follow this week’s Falcon 9 mission to the moon in a short period of time.

In February 2024, Intuitive Machines launched Odysseus, its first Nova-C lander, carrying six NASA CLPS payloads along with six additional commercial payloads. Odysseus made a largely successful landing on that mission, called IM-1, close to the crater Malapert A, which is roughly 190 miles (300 kilometers) from the lunar south pole.

IM-2 is scheduled to launch in February and will similarly travel to the south pole area of the moon, namely to a ridge close to Shackleton Crater. Among the several CLPS payloads that IM-2 will transport for NASA is an experiment known as PRIME-1 (Polar Resources Ice Mining Experiment-1), which will assist in verifying the region’s water ice abundance.

Later in 2025, a third Nova-C lander is scheduled to fly on the IM-3 mission, bringing another round of CLPS experiments and technology demonstrations on the lunar surface for the space agency.

Another probe carrying NASA CLPS payloads, Griffin Mission One, is another project that Pittsburgh-based startup Astrobotic is aiming for this year. A fuel leak prevented the company’s Peregrine lunar lander from reaching the moon after it launched last year. The probe was instead returned to Earth by its handlers, where it burned up during atmospheric descent over the Pacific Ocean.

The goal of NASA’s several CLPS contracts is to advance the agency’s Artemis program, which intends to send humans to the moon in 2027 and eventually establish a base in the southern polar area of the moon, where water ice seems to be abundant. NASA gave Human Landing Services (HLS) contracts to businesses to transport astronauts to the moon’s surface, much like CLPS did. In 2025, SpaceX’s Starship rocket—which was awarded NASA’s first HLS contract—is anticipated to do dozens of test flights, maybe including one around the moon.

By using its Blue Moon lander to transport humans to the lunar surface for missions beyond Artemis 3, Blue Origin was awarded NASA’s second HLS contract.Blue Origin’s MK1 Lunar Lander pathfinder mission is on track for a potential 2025 launch after the company’s New Glenn rocket launched successfully on January 12.

Continue Reading

Science

ISS astronauts send Christmas greetings to Earth

Published

on

Surrounded by floating candy canes and a snowman crafted from stowage bags, astronauts aboard the International Space Station (ISS) came together to share holiday greetings with those on Earth.

Expedition 72 commander Sunita “Suni” Williams, wearing festive reindeer antlers, joined fellow NASA astronauts Barry “Butch” Wilmore, Don Pettit, and Nick Hague in a cheerful video message from 260 miles (420 kilometers) above the planet.

“This is a wonderful time of year up here,” said Williams in the recording made on Monday, December 23. “We’re spending it with our space family—there are seven of us aboard the International Space Station—enjoying each other’s company.”

In addition to the four NASA astronauts, the ISS crew includes Alexey Ovchinin, Ivan Vagner, and Aleksandr Gorbunov from Russia’s Roscosmos space agency.

Hague reflected on the meaning of the season, saying, “Christmas is about spending time with friends, family, and loved ones. While we’re orbiting away from them this year, we know we’re not alone. A huge team on the ground in mission controls around the world is working to support us.”

He expressed gratitude to those teams, adding, “Their sacrifices keep this mission going, even over the holidays.”

A Holiday Feast in Space

The ground teams prepared a special holiday meal for the astronauts, which Pettit described as a feast fit for the season. “Christmas is synonymous with food and feasting,” he said. “And boy, do we have a feast packaged up here!”

Along with the meal, the crew decorated the station with a small artificial Christmas tree and ornaments featuring photos of their families.

A Festive Spirit

Hague, Pettit, and Wilmore donned Santa hats for the video, with Wilmore adding a personal touch by stretching his over a cowboy hat, a nod to his Tennessee roots. As an ordained minister and devout Christian, Wilmore also shared the spiritual significance of the holiday.

“Christmas is Christ. Hallelujah, a savior is born,” he proclaimed.

The astronauts closed their message with a heartfelt “Merry Christmas!”

A Cosmic Holiday Connection

For those on Earth, the holiday season offers its own celestial treats. Skywatchers can enjoy Venus and other planets lighting up the night sky, while history enthusiasts might explore the mystery of the Star of Bethlehem as astronomers continue to debate its origins.

From their unique vantage point in space, the ISS crew’s celebration serves as a reminder of the universal joy and togetherness that the holiday season inspires, whether on Earth or orbiting far above it.

Continue Reading

Science

A NASA spacecraft ‘touches the sun’ during a turning point in human history

Published

on

On Christmas Eve, NASA’s Parker Solar Probe set a new record by approaching the sun’s surface within barely 3.86 million miles (6.1 million kilometers). Parker’s historic moment can be followed on NASA’s Eyes On The Solar System page.

On Tuesday, December 24, a fully armored NASA spacecraft, barely larger than a tiny car, became the closest man-made object to the sun in history, marking one of humanity’s most amazing space exploration achievements. In addition, the fastest item ever created by humans broke its speed record, and humanity made its closest visit to a star ever.

A Monumental Performance

At 11:53 UTC (6:53 a.m. EST) on Tuesday, December 24, Parker accomplished an unprecedented close flyby of the sun, coming within barely 3.86 million miles (6.1 million kilometers) of its surface. This was a tremendous accomplishment of exploration. It had come this near to the sun 22 times.

It is the closest man-made object to the sun ever, at 96% of the distance between the sun and Earth, well within Mercury’s orbit at roughly 39%.

The project’s scientist at the Johns Hopkins Applied Physics Laboratory, Dr. Nour Raouafi, compares the importance of this mission to the 1969 moon landing. During a media roundtable at the annual conference of the American Geophysical Union on December 10, 2024, he declared, “It’s the moment we have been waiting for for nearly 60 years.” “In 1969, we landed humans on the moon. On Christmas Eve, we embrace a star — our star.”

‘Hyper-Close’

Parker will slice through plasma plumes that are still attached to the sun in what NASA refers to as a “hyper-close regime,” getting close enough to pass inside a solar outburst “like a surfer diving under a crashing ocean wave.”

According to Raouafi, the heat Parker will experience when it is closest to the sun is “nearly 500 times the hottest summer day we can witness on Earth.”

Parker was already the fastest thing ever constructed on Earth, but it will surpass all previous records for speed and distance when it approaches the sun at 430,000 mph (690,000 kph). The mission’s website states that it would take one second to go from Philadelphia to Washington, D.C.

On December 27, 2024, mission operators at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, will wait for a beacon tone to certify the probe’s survival after losing touch with it for three days.

On March 22 and June 19, 2025, Parker will make two additional hyper-close passes at the same distance.

Continue Reading

Trending

error: Content is protected !!