Connect with us

Science

Fascinating Bright Angel Rock Formation on Mars is Revealed by NASA’s Perseverance Rover

Published

on

Scientists are interested in this location because of its distinctive light-colored rocks and possible clues about Mars’ wetter history. Neretva Vallis is a dried river channel that leads into Jezero Crater.

The rover’s difficult navigation across sand dunes and the remains of an old river on its way to this location demonstrated the commitment and accuracy needed for such missions.

After a difficult journey, the Perseverance rover arrived at Bright Angel on June 16, 2024. The location was given its name due to a remarkably pale rock protrusion that, in photographs captured from orbit, contrasted sharply with the Martian terrain.

Scientists were intrigued by its remarkable appearance and thought it might hold secrets about the planet’s hydrological and geological past. Perseverance had to traverse a difficult terrain made up of sand dunes and rocky areas on the way to Bright Angel, which put the rover’s capabilities and the mission team’s creativity to the test.

Because Bright Angel is situated at the edge of Neretva Vallis, an old river channel that formerly supplied water to Jezero Crater, the area around it is especially important. This link to an ancient water source creates fascinating questions regarding the origins of water on Mars.

Perseverance gave the mission team their first up-close looks at Bright Angel, indicating the possible significance of the site. High-resolution photos of the luminous, exposed rock were taken by the rover’s cameras, providing a window into the planet’s geological past.

Weeks of meticulous preparation and navigation culminated in Perseverance’s arrival at Bright Angel. To prevent hazards and guarantee the rover’s safe arrival, the Earth team painstakingly planned out its path. The rover’s effective navigation of the challenging terrain in spite of the obstacles showed the strength of its design and the competence of the mission planners. The expectation that Bright Angel will provide important insights about the origins of water on Mars and, consequently, the possibility that life ever existed on the planet, highlights the importance of reaching this location.

Perseverance started its extensive scientific examination as it arrived at Bright Angel. The PIXL (Planetary Instrument for X-ray Lithochemistry), one of the instruments in the rover’s instrument suite, was used to thoroughly examine the rock formations. Scientists may examine the makeup and structure of rocks by using the PIXL device to measure light that bounces back from the surface after X-rays are scanned. This procedure is crucial to comprehending the region’s geological past and establishing whether or not it was ever inhabited.

The brightly colored boulders at Bright Angel drew the team’s attention in particular because they contrasted sharply with the surrounding Martian landscape. These rocks might be older geological material that erosion has revealed, providing a possible window into a period of Mars’ surface water flow. Scientists are hoping to learn more about the climatic and environmental conditions that prevailed on Mars billions of years ago by examining these formations.

Although the examination at Bright Angel is still in its early phases, the first results seem encouraging. Given their unusual appearance and position, the rocks may hold important secrets about the planet’s past. Scientists are eager to see the data that will help them put together Mars’ wetter history as Perseverance continues to examine the spot. The findings reported here may have a significant impact on how we perceive Mars and its capacity to support life.

Importance of the Results

Crucial information about the geological past of Mars may be gleaned from the rock formations of Bright Angel. These rocks, according to some experts, are earlier material that has been revealed by water erosion that is no longer there. According to this theory, learning more about Bright Angel may provide insight into the planet’s earlier, wetter history.

At Bright Angel, scientists have made some fascinating discoveries, including “popcorn rocks.” The densely packed spheres and mineral veins in these rocks imply that water once existed on Mars. Water carries and deposits minerals, a process that occurs on Earth and Mars and gives rise to mineral veins. This discovery supports the theory that there was once a lot of water activity on Mars.

Science

SpaceX will begin a busy year for moon missions this week with the launch of two private lunar landers

Published

on

SpaceX will begin a busy year for moon missions this week with the launch of two private lunar landers

A busy year of lunar missions will begin this week with the launch of two private lunar landers on the same rocket.

The SpaceX Falcon 9 rocket that will launch the missions has a six-day window starting early Wednesday morning (Jan. 15). Liftoff from Launch Complex-39B at NASA’s Kennedy Space Center (KSC) in Florida is set for 1:11 a.m. EST (0611 GMT).

Both landers will be transported by Falcon 9 to Earth orbit, where they will start separate journeys to the moon. The goal of Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, Ghost Riders in the Sky, is to transport scientific payloads to the moon’s surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program. Resilience, the second lander, is the second mission that the Japanese corporation ispace has undertaken in an attempt to land on the moon. Blue Ghost will be followed by iSpace’s Mission 2, which will take almost four times as long to finish.

In order to set its course toward the moon, Blue Ghost will orbit the Earth for 25 days before an engine fire. If all goes according to plan, the lander will autonomously land in Mare Crisium (“Sea of Crises”) after another 20 days, which includes 16 days in lunar orbit and four days in transit, to start two weeks of lunar science.

About five hours after nightfall on the lander’s site, Blue Ghost’s 60-day journey from Earth to the moon would come to an end. Before shutting down, the spacecraft will use its remaining battery power to take a picture of the lunar sunset.

After launch, the Resilience lander is expected to settle four to five months later on a significantly slower trajectory. Based on the lessons acquired during Hakuto-R Mission 1, ispace’s second mission, Resilience, has been outfitted with both software and hardware enhancements. In April 2023, the mission’s attempt to land was unsuccessful due to a malfunctioning altitude sensor on the lander, which caused a crash on the lunar surface. The mission had successfully reached lunar orbit.

With Hakuto-R Mission 2, ispace is adopting a methodical approach, outlining a 10-step list of milestones Resilience will accomplish en route to the moon, along with an additional checklist for objectives accomplished after a successful lunar landing. In the northern hemisphere of the moon, the lander is headed for Mare Frigoris (Sea of Cold), where it will start surface operations. As part of a contract with NASA, the lander will deploy an onboard microrover called Tenacious to gather a sample of regolith, or moon dust.

Future months will see more moon missions

Another lunar laundering operation, this time from the only private corporation to land on the moon so far, will follow this week’s Falcon 9 mission to the moon in a short period of time.

In February 2024, Intuitive Machines launched Odysseus, its first Nova-C lander, carrying six NASA CLPS payloads along with six additional commercial payloads. Odysseus made a largely successful landing on that mission, called IM-1, close to the crater Malapert A, which is roughly 190 miles (300 kilometers) from the lunar south pole.

IM-2 is scheduled to launch in February and will similarly travel to the south pole area of the moon, namely to a ridge close to Shackleton Crater. Among the several CLPS payloads that IM-2 will transport for NASA is an experiment known as PRIME-1 (Polar Resources Ice Mining Experiment-1), which will assist in verifying the region’s water ice abundance.

Later in 2025, a third Nova-C lander is scheduled to fly on the IM-3 mission, bringing another round of CLPS experiments and technology demonstrations on the lunar surface for the space agency.

Another probe carrying NASA CLPS payloads, Griffin Mission One, is another project that Pittsburgh-based startup Astrobotic is aiming for this year. A fuel leak prevented the company’s Peregrine lunar lander from reaching the moon after it launched last year. The probe was instead returned to Earth by its handlers, where it burned up during atmospheric descent over the Pacific Ocean.

The goal of NASA’s several CLPS contracts is to advance the agency’s Artemis program, which intends to send humans to the moon in 2027 and eventually establish a base in the southern polar area of the moon, where water ice seems to be abundant. NASA gave Human Landing Services (HLS) contracts to businesses to transport astronauts to the moon’s surface, much like CLPS did. In 2025, SpaceX’s Starship rocket—which was awarded NASA’s first HLS contract—is anticipated to do dozens of test flights, maybe including one around the moon.

By using its Blue Moon lander to transport humans to the lunar surface for missions beyond Artemis 3, Blue Origin was awarded NASA’s second HLS contract.Blue Origin’s MK1 Lunar Lander pathfinder mission is on track for a potential 2025 launch after the company’s New Glenn rocket launched successfully on January 12.

Continue Reading

Science

ISS astronauts send Christmas greetings to Earth

Published

on

Surrounded by floating candy canes and a snowman crafted from stowage bags, astronauts aboard the International Space Station (ISS) came together to share holiday greetings with those on Earth.

Expedition 72 commander Sunita “Suni” Williams, wearing festive reindeer antlers, joined fellow NASA astronauts Barry “Butch” Wilmore, Don Pettit, and Nick Hague in a cheerful video message from 260 miles (420 kilometers) above the planet.

“This is a wonderful time of year up here,” said Williams in the recording made on Monday, December 23. “We’re spending it with our space family—there are seven of us aboard the International Space Station—enjoying each other’s company.”

In addition to the four NASA astronauts, the ISS crew includes Alexey Ovchinin, Ivan Vagner, and Aleksandr Gorbunov from Russia’s Roscosmos space agency.

Hague reflected on the meaning of the season, saying, “Christmas is about spending time with friends, family, and loved ones. While we’re orbiting away from them this year, we know we’re not alone. A huge team on the ground in mission controls around the world is working to support us.”

He expressed gratitude to those teams, adding, “Their sacrifices keep this mission going, even over the holidays.”

A Holiday Feast in Space

The ground teams prepared a special holiday meal for the astronauts, which Pettit described as a feast fit for the season. “Christmas is synonymous with food and feasting,” he said. “And boy, do we have a feast packaged up here!”

Along with the meal, the crew decorated the station with a small artificial Christmas tree and ornaments featuring photos of their families.

A Festive Spirit

Hague, Pettit, and Wilmore donned Santa hats for the video, with Wilmore adding a personal touch by stretching his over a cowboy hat, a nod to his Tennessee roots. As an ordained minister and devout Christian, Wilmore also shared the spiritual significance of the holiday.

“Christmas is Christ. Hallelujah, a savior is born,” he proclaimed.

The astronauts closed their message with a heartfelt “Merry Christmas!”

A Cosmic Holiday Connection

For those on Earth, the holiday season offers its own celestial treats. Skywatchers can enjoy Venus and other planets lighting up the night sky, while history enthusiasts might explore the mystery of the Star of Bethlehem as astronomers continue to debate its origins.

From their unique vantage point in space, the ISS crew’s celebration serves as a reminder of the universal joy and togetherness that the holiday season inspires, whether on Earth or orbiting far above it.

Continue Reading

Science

A NASA spacecraft ‘touches the sun’ during a turning point in human history

Published

on

On Christmas Eve, NASA’s Parker Solar Probe set a new record by approaching the sun’s surface within barely 3.86 million miles (6.1 million kilometers). Parker’s historic moment can be followed on NASA’s Eyes On The Solar System page.

On Tuesday, December 24, a fully armored NASA spacecraft, barely larger than a tiny car, became the closest man-made object to the sun in history, marking one of humanity’s most amazing space exploration achievements. In addition, the fastest item ever created by humans broke its speed record, and humanity made its closest visit to a star ever.

A Monumental Performance

At 11:53 UTC (6:53 a.m. EST) on Tuesday, December 24, Parker accomplished an unprecedented close flyby of the sun, coming within barely 3.86 million miles (6.1 million kilometers) of its surface. This was a tremendous accomplishment of exploration. It had come this near to the sun 22 times.

It is the closest man-made object to the sun ever, at 96% of the distance between the sun and Earth, well within Mercury’s orbit at roughly 39%.

The project’s scientist at the Johns Hopkins Applied Physics Laboratory, Dr. Nour Raouafi, compares the importance of this mission to the 1969 moon landing. During a media roundtable at the annual conference of the American Geophysical Union on December 10, 2024, he declared, “It’s the moment we have been waiting for for nearly 60 years.” “In 1969, we landed humans on the moon. On Christmas Eve, we embrace a star — our star.”

‘Hyper-Close’

Parker will slice through plasma plumes that are still attached to the sun in what NASA refers to as a “hyper-close regime,” getting close enough to pass inside a solar outburst “like a surfer diving under a crashing ocean wave.”

According to Raouafi, the heat Parker will experience when it is closest to the sun is “nearly 500 times the hottest summer day we can witness on Earth.”

Parker was already the fastest thing ever constructed on Earth, but it will surpass all previous records for speed and distance when it approaches the sun at 430,000 mph (690,000 kph). The mission’s website states that it would take one second to go from Philadelphia to Washington, D.C.

On December 27, 2024, mission operators at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, will wait for a beacon tone to certify the probe’s survival after losing touch with it for three days.

On March 22 and June 19, 2025, Parker will make two additional hyper-close passes at the same distance.

Continue Reading

Trending

error: Content is protected !!