Connect with us

Technology

Defying The Next AI “Hype Cycle”: An Approach To Strategic Investing

Published

on

Defying The Next AI Hype Cycle An Approach To Strategic Investing

AI’s influence is a topic that every investor is discussing. Additionally, businesses have been scrambling to adopt the newest AI technologies in an effort to stay ahead of the curve since the introduction of ChatGPT and other tools that have brought AI into the mainstream. When it comes to investing, we urgently need to adopt a more nuanced perspective on AI and related technologies.

For instance, a lot of AI tools like ChatGPT are by no means groundbreaking discoveries in computing or the study of the human mind. Tools for generative AI employ massive amounts of processing power on a wide range of data sets. And because of this fact, the hundreds of firms that have sprung up in the market offering ChatGPT-based solutions are probably going to fail.

That’s not to argue that businesses that properly apply generative AI won’t see enormous opportunities. It most definitely will. The crucial lesson here, though, is that tech investors shouldn’t jump at the chance to fund the “next best thing.” Given their accountability for valuing businesses that employ these technologies, they should exercise caution in igniting yet another hype cycle, as we have seen with artificial intelligence. It is necessary to say this in order to safeguard LPs and VC companies, as well as the startups and the larger tech industry.

Not Falling For “The Next Big Thing”

While it’s understandable that investors in technology are eager to see the next big thing, it’s important to keep an open mind while assessing possible prospects. With so much media coverage, it’s simple to make snap judgments on investments that don’t properly take into account a company’s long-term potential, its technology’s use cases, and other factors.

It is imperative for investors to inquire about the company’s long-term plan to ensure sustainable growth. The past’s investment success stories ought to serve as a sufficient cautionary tale about what occurs when big money is rushed into the most well-known businesses. Consider WeWork as an example. At its height, it was the most popular company, but due to the extreme overvaluations caused by careless investment, significant financial losses were the only likely consequence.

Before making an investment, all investors have an obligation to thoroughly examine technology companies. Why? Since following a fad too quickly may encourage people to make irrational investments that artificially inflate prices. Long-term, this only serves to disappoint partners, investors, and the businesses themselves. Naturally, the investors’ reputations may also be damaged.

Hazards On The Horizon

Needless to say, we need to take the time to carefully consider the risks associated with even the most alluring new technologies. A number of “ChatGPT startups” are cautionary examples of businesses that have a glossy exterior but nothing in the way of meaningful product innovation. As we’ve seen with those using OpenAI technology, many companies that promise to bring the next big thing instead end up building flimsy application layers on top of already-existing technologies. In the event that the underlying technology firm is dissolved, what would happen? This increased risk entails a decrease in long-term viability.

Securing The Future With Assurance

Never want to lose out on the next Google or Apple for their investments. Before getting ahead of ourselves, though, we should really consider the businesses we’re investing in. Is it the hype cycle or the enduring potential that excites us? History has shown us that fuelling an overhyped movement carries significant consequences for all parties involved.

Technology

Timescale Introduces Advanced AI Vector Database Extensions for PostgreSQL

Published

on

A PostgreSQL cloud database provider recently declared the availability of two brand-new, open-source extensions that greatly improve the scalability and usability of its data retrieval from vector databases for artificial intelligence applications.

Using PostgreSQL, an open-source relational database, for vector data retrieval is made possible by the new extensions, pgvectorscale and pgai. This is essential for developing AI applications and specialized contextual search.

AI programmers can add data to high-dimensional arrays using vector databases, connecting them based on their contextual relationships with each other. Vector databases store data using contextualized meanings, where the “nearest neighbor” can be used to connect them, in contrast to typical relational databases. For example, a cat and a dog have a closer meaning as family pets than does an apple. When an AI searches for semantic data, including keywords, documents, photos, and other media, this speeds up the information-finding process.

Timescale’s AI product lead, Avthar Sewrathan, told SiliconANGLE in an interview that while most of this data is kept in very popular, high-performance vector databases, not all of the data used by services is kept in vector databases. Thus, in the same context, there are occasionally several data sources.

“AI is being incorporated into every organization in the world, in some form or another, whether through the development of new apps that capitalize on the power of large language models or through the redesign of current ones,” stated Sewrathan. Therefore, CTOs and technical teams must decide whether to employ a distinct vector database or a database they are already familiar with while figuring out how to use AI. Encouraging Postgres to be a better database for AI is the driving force behind these enhancements.

Building on the open-source foundation of the original expansion, pgvectorscale, enables developers to create more scalable artificial intelligence (AI) applications with improved search performance at a reduced cost.

According to Sewrathan, it incorporates two innovations: Statistical Binary Quantization, which is an enhancement of standard binary quantization that helps reduce memory use, and DiskANN, which can offload half of its search indexes to disk with very little impact on performance. DiskANN is capable of saving a significant amount of money.

In comparison to the widely used Pinecone vector database, PostgreSQL was able to attain 28x lower latency for 95% and 16x greater query throughput for approximate nearest neighbor queries at 99% recall, according to Timescale’s benchmarks of pgvectorscale. Since pgvectorscale is written in Rust instead of C, PostgreSQL developers will have more options when developing for vector support.

The next addition, pgai, is intended to facilitate the development of retrieval-augmented generation, or RAG, solutions for search and retrieval in applications using artificial intelligence. In order to lessen the frequency of hallucinations—which occur when an AI boldly makes erroneous statements—RAG blends the advantages of vector databases with the skills of LLMs by giving them access to current, reliable information in real-time.

Building precise and dependable AI systems requires an understanding of this technique. OpenAI conversation completions from models like GPT-4o are built directly within PostgreSQL with the first release of pgai, which facilitates the creation of OpenAI embeddings rapidly.

The most recent flagship model from OpenAI, the GPT-4o, offers strong multimodal capabilities like video comprehension and real-time speech communication.

According to Sewrathan, PostgreSQL’s vector functionality builds a strong “ease of use” bridge for developers. This is significant because many firms currently use PostgreSQL or other relational databases.

Because it streamlines your data architecture, adding vector storage and other features via an extension is much easier, according to Sewrathan. “One database is all you have.” It has the ability to store several data kinds simultaneously. That has been extremely beneficial because without it, there would be a great deal of complexity, data synchronization, and data deduplication.

Continue Reading

Technology

Apple is Updating Siri and Giving it new Generative AI Capabilities

Published

on

The release of iOS 18, macOS updates, and other significant announcements marked the beginning of Apple’s yearly Worldwide Developers Conference (WWDC) 2024 yesterday. The launch of the eagerly awaited new iteration of Apple’s voice assistant, Siri, was the most notable of these. By means of a brand-new system dubbed “Apple Intelligence,” the revised Siri is equipped with stronger generative AI capabilities.

With these enhanced artificial intelligence capabilities, Apple has enabled Siri to perform better, becoming more contextually aware, natural, and deeply ingrained in the Apple environment. The incorporation of ChatGPT into this change promises more intelligent responses and new AI-powered functionality. The updated Siri, according to Apple, is “more natural, more contextually relevant, and more personal,” and it may speed and streamline routine activities. Let’s examine each of the recently added features of Apple’s sophisticated voice assistant in depth.

New style

Activating a bright light that encircles the screen edges is just one of the many features of the redesigned Siri. Increased user engagement is the goal of this graphic makeover. Apple has added onscreen awareness to Siri, which goes beyond aesthetics and allows the virtual assistant to take actions based on what’s on the screen. Customers may now ask Siri to locate and act upon book recommendations received via Messages or Mail, or to add a new address straight from a text message to a contact card.

An enhanced capacity for linguistic comprehension

Apple’s Siri now features richer language-understanding capabilities, allowing it to process and respond to user commands more naturally. This improvement ensures Siri can maintain context across multiple interactions, even if users stumble over their words. Additionally, users can now type to Siri and switch seamlessly between text and voice inputs, offering more flexible ways to interact with the assistant.

Siri’s compatibility with outside applications

Because of the new App Intents API, one of the most notable aspects of the new Siri is its ability to perform actions in a variety of apps—both those developed by Apple and those by outside developers. This means that programmers can give Siri specific commands to execute within their apps. For example, users may ask Siri to “send the photos from the barbecue on Saturday to Malia” using a message app, or “make this photo pop” in a photo editing software. Interactions between various apps and services can now be done more easily thanks to this added capabilities.

Apple and openAI collaborate to power Siri

Notably, Apple and OpenAI have teamed to enhance Siri’s generative AI capabilities by integrating ChatGPT technology. With this integration, Siri can respond with greater sophistication and manage jobs that are more complicated. Users of Apple’s Mac and iPhone operating systems will be able to access ChatGPT through updates, which will improve features like text and content production. Apple’s plan to integrate cutting-edge AI technologies and maintain its competitiveness in the IT industry includes this relationship.

Apple uses sophisticated Siri to protect user privacy

Users can be reassured by Apple that Siri and the new AI capabilities in its devices will respect its strict privacy policies. While the company will rely on the cloud without storing user data there for more power-intensive operations, certain AI functions will process data directly on the device. This strategy aligns with Apple’s goal of striking a balance between improved usefulness and consumer privacy.

The new Siri will only be available on a few chosen Apple devices

The newest iPads, Macs, and iPhones will be the only devices that can utilize this sophisticated Siri experience. Most of Siri’s new features, which are powered by Apple Intelligence, will only be available on the iPhone 15 Pro, iPhone 15 Pro Max, iPads, and Macs with M1 CPUs or later.

Continue Reading

Technology

EU Introduces an AI-Driven “Digital Twin” of the Planet

Published

on

Today, the European Commission unveiled the initial iteration of Destination Earth (DestinE), an AI-driven simulator designed to increase the precision of climate projections.

Two models—one for extreme weather events and another for adapting to climate change—are included in the initial edition of DestinE. With the use of these models, the Earth’s climate will be closely observed, predicted, and simulated.

According to EU antitrust chief Margrethe Vestager, “DestinE means that we can observe environmental challenges which can help us predict future scenarios – like we have never done before.”

The LUMI supercomputer located in Finland is one of the high-performance computers (EuroHPC) that power DestinE. To accelerate data processing, the developers have integrated this with AI.

Vestager stated, “This first phase shows how much we can achieve when Europe puts together its massive supercomputing power and its scientific excellence.”

The main model will, however, probably change over time, and by the end of this decade, a digital duplicate of the Earth should be finished.

Digital Twin of the Earth

Want to test how a heatwave will impact food security? Or if a storm will flood a certain city? Or the best places to position your wind farm? All of that could be possible using the digital twin of the Earth.

The digital twin uses a sizable data lake to fuel its simulations and forecasts. Satellites like those used in the EU’s Copernicus program are the source of this data. It will also originate from vast amounts of public data as well as IoT devices situated on the ground.

Future iterations of the digital twin of Earth will incorporate data from forests, cities, and oceans, pretty much anyplace on Earth that scientists can analyze data.

In 2022, the EU launched DestinE for the first time. The digital twin will be constructed with funding exceeding €300 million.

With today’s launch, the first phase comes to a conclusion and the second phase begins, with a combined funding commitment of over €150 million for both.

As the final Digital Europe program 2025–2027 is presently being prepared, its approval will determine the funding for the third stage.

Organizations working on this kind of technology are not limited to the EU. The Earth-2 digital replica was introduced by Nvidia in March. As stated by the powerhouse in chip manufacturing, the model is currently being used by the Taiwanese government to more accurately forecast when typhoons will hit land.

Continue Reading

Trending

error: Content is protected !!