Connect with us


The preparations made by NASA to collect an asteroid sample that landed in the desert



After nearly 2 years in space, a NASA spacecraft carrying an asteroid sample is about to reach Earth.

NASA is collecting and returning an asteroid sample from space for the very first time.

The rocks and soil, along with a sample of the asteroid Ryugu from Japan’s Hayabusa2 mission, may provide clues about how our solar system started.

The OSIRIS-REx mission will drop the sample of rocks and soil and continue its journey to study another asteroid rather than landing.

Teams have been practicing how to retrieve the sample on September 24, when it will drop into the Utah desert, which was originally obtained from the near-Earth asteroid Bennu.

It is assessed that OSIRIS-REx gathered up to 8.8 ounces, or around 1 cup, of material from Bennu.

In a statement, Nicola Fox, associate administrator of NASA’s Science Mission Directorate, said, “This successful drop test ensures we’re ready.” “We are now just weeks away from receiving a piece of solar system history on Earth.” Perfect material from space rock Bennu will assist with revealing insight into the arrangement of our planetary group 4.5 quite a while back, and maybe even on how life on Earth started.”

It doesn’t happen very often that a spacecraft launches a capsule above the planet with the intention of safely transporting a unique sample of an asteroid to a specific landing site.

Long periods of difficult work by great many individuals have prompted the second when the Bennu test shows up on The planet.

Teams practiced recovering the sample capsule and ran through all possible outcomes, both positive and negative, prior to reentry day in the spring and summer.

The initial objective of the mission was to obtain a flawless asteroid sample. Be that as it may, on the off chance that the container crash-terrains and opens up, the example could become defiled.

“I’m massively pleased with the endeavors our group has filled this undertaking,” said Dante Lauretta, head specialist for OSIRIS-REx at the College of Arizona in Tucson, in a proclamation. ” We have honed our skills for sample recovery in the same way that our meticulous planning and practice helped us get ready to collect a sample from Bennu.

The first return mission for an asteroid sample is OSIRIS-REx, which stands for Origins, Spectral Interpretation, Resource Identification, Security, and Regolith Explorer. The journey of the spacecraft has lasted seven years. After launching in 2016, OSIRIS-REx entered Bennu’s orbit in 2018, collected the sample in 2020, and embarked on its extended return journey to Earth in May 2021.

Since leaving Bennu, the space apparatus has orbited the sun two times so it tends to be on the right direction to meet with Earth.

The mission team sent a series of maneuvers to the spacecraft in July to help it find a place outside of Salt Lake City where the capsule could land at the Department of Defense’s Utah Test and Training Range.

NASA will provide a live stream of the sample’s arrival on Earth on September 24. The live stream will start at 10 a.m. ET, and the container containing the example will enter Earth’s environment at 10:42 a.m. ET, going around 27,650 miles each hour (44,498 kilometers each hour).

Four hours before the container’s air passage, the mission group will choose whether to send an order to the rocket to deliver the case, said Rich Consumes, OSIRIS-REx project director at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The decision is based on the trajectory of the spacecraft, which determines the capsule’s ability to survive the angle, the temperature of reentry, the accuracy of the landing, and the safety of humans within the landing zone. Burns stated that the point at which OSIRIS-REx will be 63,000 miles (102,000 kilometers) from Earth and heading for an area that spans 250 square miles (647.5 kilometers) is when the capsule will be released. According to Burns, this will be “the equivalent of throwing a dart across the length of a basketball court and hitting the bull’s-eye.”

Burns stated that OSIRIS-REx will conduct a divert maneuver once the capsule is released, putting it on a course around the sun and aiming for Apophis, another asteroid, in 2029 for a rendezvous.

The capsule will be enveloped by a superhot ball of fire when it enters Earth’s atmosphere, but the sample inside will be protected by the container’s heat shield.

Sandra Freund, OSIRIS-REx program manager at Lockheed Martin Space, which partnered with NASA to build the spacecraft, provide flight operations, and help recover the capsule, stated that parachutes will deploy to slow the capsule down for a gentle touchdown at 11 miles per hour (17.7 kilometers per hour). Recovery teams will be standing by to retrieve the capsule once it is safe to do so.

13 minutes after the capsule enters the atmosphere of Earth, landing is anticipated.

The sample will be transported to a temporary cleanroom at the range in June by helicopter in a cargo net. The sample container will be prepared there by a team before being flown on a C-17 aircraft on September 25 to NASA’s Johnson Space Center in Houston. On October 11, a NASA broadcast hosted by Johnson will provide the public with information regarding the sample.

Training in the desert, according to Freund, NASA and Lockheed Martin Space teams have practiced every possible step in preparation for delivery day.

A sample capsule was recently dropped, collected, and prepared for transport by the team using an airplane.

It also dealt with difficult scenarios from the command center, such as what to do in the event of a reboot, how to get the spacecraft out of safe mode, and how to move communications between centers in the event of network outages.

The group has likewise arranged for various landing situations, for example, a hard landing where the container containing the example opens startlingly. After that, the team would determine if any of the sample could be saved.

According to Burns, there is also the possibility that the spacecraft will not be able to release the sample on September 24 if landing within range is impractical. In that situation, the example would stay ready, and the space apparatus’ circle would bring the case back by Earth to endeavor one more delivery over Utah in 2025.

The Johnson Space Center has a long history of storing, handling, and analyzing extraterrestrial materials, such as Apollo lunar samples. NASA has dealt with making an exceptional office at Johnson for the Bennu test for a really long time, said Kevin Righter, OSIRIS-REx representative curation lead.

As scientists examine the rocks and soil over the next two years, the dedicated cleanroom will keep any potential cross-contamination with other collections out of the equation. Christopher Snead, OSIRIS-REx deputy curator at Johnson and lead for small-particle handling, says that some of the material will be smaller than a grain of sand.

“We have been developing custom tools to carefully handle these precious particles within our new gloveboxes,” Snead said in a statement, referring to the boxes for managing hazardous or extraterrestrial material.

The example will uncover data about the arrangement and history of our planetary group as well as the job of space rocks in creating livable planets like Earth. Bennu and other asteroids are thought to have delivered elements like water to Earth early in their formation.

The sample will be divided up and sent to laboratories all over the world, including the Canadian Space Agency and the Japanese Aerospace Exploration Agency, which are OSIRIS-REx mission partners. Around 70% of the example will stay flawless away so people in the future with better innovation can learn considerably more than whatever’s presently conceivable.

“The asteroids that we have in our solar system today are left over from the earliest stage of solar system history,” Lauretta said. “We’re literally looking at geologic materials that formed before the Earth even existed. I call these the grandfather rocks, the ones that really represent our origins and where we came from. This is a gift to the world.”


AI is changing sea ice melting climate projections




AI is changing sea ice melting climate projections

The tremendous melting of sea ice at the poles is one of the most urgent problems facing planet as it warms up so quickly. These delicate ecosystems, whose survival depends so heavily on floating ice, have a difficult and uncertain future.

As a result, climate scientists are using AI more and more to transform our knowledge of this vital habitat and the actions that can be taken to preserve it.

Determining the precise date at which the Arctic will become ice-free is one of the most urgent problems that must be addressed in order to develop mitigation and preservation strategies. A step toward this, according to Princeton University research scientist William Gregory, is to lower the uncertainty in climate models to produce these kinds of forecasts.

“This study was inspired by the need to improve climate model predictions of sea ice at the polar regions, as well as increase our confidence in future sea ice projections,” said Gregory.

Arctic sea ice is a major factor in the acceleration of global climate change because it cools the planet overall by reflecting solar radiation back into space. But because of climate change brought on by our reliance on gas, oil, and coal, the polar regions are warming considerably faster than the rest of the world. When the sea is too warm for ice to form, more solar radiation is absorbed by the Earth’s surface, which warms the climate even more and reduces the amount of ice that forms.

Because of this, polar sea ice is extremely important even outside of the poles. The Arctic Ocean will probably eventually have no sea ice in the summer, which will intensify global warming’s effects on the rest of the world.

AI coming to the rescue

Predictions of the atmosphere, land, sea ice, and ocean are consistently biased as a result of errors in climate models, such as missing physics and numerical approximations. Gregory and his colleagues decided to use a kind of deep learning algorithm known as a convolutional neural network for the first time in order to get around these inherent problems with sea ice models.

“We often need to approximate certain physical laws in order to save on [computational] time,” wrote the team in their study. “Therefore, we often use a process called data assimilation to combine our climate model predictions together with observations, to produce our ‘best guess’ of the climate system. The difference between best-guess-models and original predictions provides clues as to how wrong our original climate model is.”

The team aims to show a computer algorithm  “lots of examples of sea ice, atmosphere and ocean climate model predictions, and see if it can learn its own inherent sea ice errors” according to their study published in JAMES.

Gregory explained that the neural network “can predict how wrong the climate model’s sea ice conditions are, without actually needing to see any sea ice observations,” which means that once it learns the features of the observed sea ice, it can correct the model on its own.

They achieved this by using climate model-simulated variables such as sea ice velocity, salinity, and ocean temperature. In the model, each of these factors adds to the overall representation of the Earth’s climate.

“Model state variables are simply physical fields which are represented by the climate model,” explained Gregory. “For example, sea-surface temperature is a model state variable and corresponds to the temperature in the top two meters of the ocean.

“We initially selected state variables based on those which we thought a-priori are likely to have an impact on sea ice conditions within the model. We then confirmed which state variables were important by evaluating their impact on the prediction skill of the [neural network],” explained Gregory.

In this instance, the most important input variables were found to be surface temperature and sea ice concentration—much fewer than what most climate models require to replicate sea ice. In order to fix the model prediction errors, the team then trained the neural network on decades’ worth of observed sea ice maps.

An “increment” is an additional value that indicates how much the neural network was able to enhance the model simulation. It is the difference between the initial prediction made by the model without AI and the corrected model state.

A revolution in progress

Though it is still in its early stages, artificial intelligence is becoming more and more used in climate science. According to Gregory, he and his colleagues are currently investigating whether their neural network can be applied to scenarios other than sea ice.

“The results show that it is possible to use deep learning models to predict the systematic [model biases] from data assimilation increments, and […] reduce sea ice bias and improve model simulations,” said Feiyu Lu, project scientist at UCAR and NOAA/GFDL, and involved in the same project that funded this study.

“Since this is a very new area of active research, there are definitely some limitations, which also makes it exciting,” Lu added. “It will be interesting and challenging to figure out how to apply such deep learning models in the full climate models for climate predictions.”  

Continue Reading


For a brief moment, a 5G satellite shines brightest in the night sky




An as of late sent off 5G satellite occasionally turns into the most splendid article in the night sky, disturbing cosmologists who figure it in some cases becomes many times more brilliant than the ongoing suggestions.

Stargazers are progressively concerned human-created space equipment can obstruct their exploration endeavors. In Spring, research showed the quantity of Hubble pictures photobombed in this manner almost multiplied from the 2002-2005 period to the 2018-2021 time span, for instance.

Research in Nature this week shows that the BlueWalker 3 satellite — model unit intended to convey 4 and 5G telephone signals — had become quite possibly of the most brilliant item in the night sky and multiple times surpass suggested limits many times over.

The exploration depended on a worldwide mission which depended on perceptions from both novice and expert perceptions made in Chile, the US, Mexico, New Zealand, the Netherlands and Morocco.

BlueWalker 3 has an opening of 693 square feet (64m2) – about the size of a one-room condo – to interface with cellphones through 3GPP-standard frequencies. The size of the exhibit makes a huge surface region which reflects daylight. When it was completely conveyed, BlueWalker 3 became as splendid as Procyon and Achernar, the most brilliant stars in the heavenly bodies of Canis Minor and Eridanus, separately.

The examination – drove by Sangeetha Nandakumar and Jeremy Tregloan-Reed, both of Chile’s Universidad de Atacama, and Siegfried Eggl of the College of Illinois – likewise took a gander at the effect of the impacts of Send off Vehicle Connector (LVA), the spaceflight holder which frames a dark chamber.

The review found the LVA arrived at an evident visual size of multiple times more splendid than the ongoing Worldwide Cosmic Association suggestion of greatness 7 after it discarded the year before.

“The normal form out of groups of stars with a huge number of new, brilliant items will make dynamic satellite following and evasion methodologies a need for ground-based telescopes,” the paper said.

“Notwithstanding numerous endeavors by the airplane business, strategy creators, cosmologists and the local area on the loose to relieve the effect of these satellites on ground-based stargazing, with individual models, for example, the Starlink Darksat and VisorSat moderation plans and Bragg coatings on Starlink Gen2 satellites, the pattern towards the send off of progressively bigger and more splendid satellites keeps on developing.

“Influence appraisals for satellite administrators before send off could assist with guaranteeing that the effect of their satellites on the space and Earth conditions is fundamentally assessed. We empower the execution of such investigations as a component of sending off approval processes,” the exploration researchers said.

Last month, Vodafone professed to have made the world’s most memorable space-based 5G call put utilizing an unmodified handset with the guide of the AST SpaceMobile-worked BlueWalker 3 satellite.

Vodafone said the 5G call was made on September 8 from Maui, Hawaii, to a Vodafone engineer in Madrid, Spain, from an unmodified Samsung World S22 cell phone, utilizing the WhatsApp voice and informing application.

Continue Reading


Fans Of Starfield Have Found A Halo Easter Egg




Starfield has a totally huge world to investigate, so it was inevitable before players began finding Hidden little goodies and unpretentious gestures to other science fiction establishments that preceded it. As of late, a specific tenable planet in the Eridani framework has fans persuaded it’s a diversion of a fairly sad world in the Corona series.

Players have found that Starfield’s rendition of the Epsilon Eridani star framework, a genuine star framework that is likewise a significant piece of Corona legend, incorporates a planet that looks similar to that of Reach, where 2010’s Radiance: Reach occurred. Portrayed on Halopedia as including “transcending mountains, deserts, and climate beaten timberlands,” Starfield’s Eridani II has comparative landscape to Reach. Unfortunately, nobody’s found any unusual ostrich-like birdies.

As referenced, Eridani II is a genuine star framework out there in the void. It was first expounded on in Ptolemy’s Inventory of Stars, which recorded north of 1,000 universes, as well as other Islamic works of cosmology. During the 1900s, being around 10.5 light-years from our planetary group was assessed. Epsilon Eridani and Tau Ceti—also featured in Starfield and Marathon, another Bungie shooter—were initially viewed by SETI (the Search for Extraterrestrial Intelligence project, which searches the skies for signs of other civilizations) as a likely location for habitable planets that either contained extraterrestrial life or might be a good candidate for future space travel.

Assuming that you might want to visit Eridani II in Starfield, you can do so from the beginning in the game. Beginning from Alpha Centauri (home of The Hotel and other early story minutes in Starfield), go down and to one side on the star guide and you’ll find the Eridani star framework, which is just a simple 19.11 light years away.

Navigate to Eridani II and land in any of its biome regions for pleasant weather and mountainous terrain once you’re there. As certain fans have called attention to, Eridani II’s areas are nearer to what’s found in the Corona: Arrive at level “Tip of the Lance” than its more rich, lush regions displayed in different places of the game’s mission. This is an ideal place for Radiance fans to fabricate their most memorable station (and you will not need to manage the difficulties of outrageous conditions).

You need to add a widget, row, or prebuilt layout before you’ll see anything here. 🙂

Continue Reading


error: Content is protected !!