Connect with us

Science

Weird science facts

Published

on

Usually, with science homework help you learn some essential facts about life like about forces that work in our world or molecular structure. But it is often very formal and not exciting. What about fun facts that will make science more interesting?

1. Babies have more bones than adults

At birth, babies have approximately 300 bones and cartilage between them. This flexibility allows them to pass through the birth canal, and also allows them to grow quickly. Many bones fuse with age. There are 206 bones in an average adult skeleton.

2. During the summer, the Eiffel Tower can reach 15 cm higher

Thermal expansion is the movement of particles in a substance when it is heated up. This is what is called a thermal expansion. A drop in temperature can cause it to contract. For example, the mercury level in a thermometer will rise and fall as the mercury volume changes with the temperature. This effect is strongest in gases, but it also occurs in liquids and solids like iron. This is why large structures like bridges have expansion joints that allow them to expand and contract without causing damage.

3. The Amazon rainforest produces 20% of Earth’s oxygen

The atmosphere is composed of approximately 78% nitrogen and 21% oxygen. There are also small amounts of other gases. Most living organisms on Earth require oxygen for survival. They convert it into carbon dioxide when they breathe. Photosynthesis is a way for plants to replenish oxygen levels on the planet. This process converts carbon dioxide and water into energy and releases oxygen as a byproduct. The Amazon rainforest covers 5.5 million km2 (2.1 million sq miles). It absorbs large amounts of carbon dioxide and cycles significant quantities of oxygen.

4. Some metals explode when they come in contact with water

Certain metals, such as potassium, sodium and rubidium, oxidize (or tarnish) quickly when exposed to oxygen. Dropping them in water can cause explosions. Chemical stability is a goal for all elements. This means that they must have an outer electron shell. Metals are known to lose electrons in order to achieve this. Alkali metals only have one electron in their outer shell, which makes them extremely eager to pass this unwelcome passenger on to another element through bonding. They form compounds with other elements so easily that they can’t exist in their own right.

5. 6 billion tonnes for a teaspoonful of neutron stars

A neutron star is a remnant of a large star that has run out of fuel. A supernova occurs when a dying star explodes, and its core collapses under gravity to form a super-dense neutron star. The staggeringly large solar masses of galaxies or stars are measured by astronomers in solar masses. This is equivalent to 2 x 1030 kg/4.4 x 1030 lbs. The typical neutron star has a mass up to three solar masses. This is compressed into a sphere of approximately ten kilometers (6.2 miles), which results in some of the most dense matter in the universe.

6. Every year, Hawaii moves 7.5 cm closer to Alaska

The Earth’s crust has been split into huge pieces known as tectonic plates. These plates move in constant motion due to currents in Earth’s upper crust. Hotter, denser rock rises and then cools and sinks. This creates circular convection currents that act as giant conveyor belts that slowly shift the tectonic plates. Hawaii is located in the middle Pacific Plate. It slowly drifts north-west towards the North American Plate and back to Alaska. The speed of the plates is similar to how fast our fingernails grow.

7. Chalk is made of trillions upon trillions of microscopic plankton fossils

Coccolithophores are tiny single-celled algae that have been living in the oceans of Earth for over 200 million years. They surround themselves with tiny plates of calcite (coccoliths), which is unlike any other marine plant. Coccolithophores formed in thick layers on ocean floors, covering them with a white ooze. This was just 100 million years ago. The pressure from the ocean floor pushed the coccoliths into rock. This created chalk deposits like the Dover white cliffs. Coccolithophores is just one example of many prehistoric species that are preserved in fossil form. But how can we determine how old they really are? Rock forms in horizontal layers over time. Older rocks are at the bottom, while younger rocks are near the top. Paleontologists can approximate the age of a fossil by studying the rock from which it is found. Based on radioactive elements like carbon-14, carbon dating gives a more precise estimate of a fossil’s age.

8. It will be too hot to sustain life on Earth in 2.3 billion years

The Sun will get brighter and more intense over the next hundreds of millions of year. Temperatures will rise to the point that our oceans will evaporate in just 2 billion years. This will make it impossible for Earthlings to live. Our planet will soon become a desert like Mars. Scientists predict that Earth will eventually be engulfed by the Sun as it grows into a red giant over the next few billion years.

9. Infrared cameras are almost impossible to detect polar bears

The heat that is lost by a subject can be detected using thermal cameras, but polar bears have mastered the art of conserving heat. A thick layer of blubber beneath the skin keeps bears warm. They can withstand even the coldest Arctic days thanks to their dense fur coat.

10. It takes light 8 minutes and 19 seconds to travel from Earth to Sun

Light travels 300,000 km (186,000 miles per second) in space. It takes a lot of time to cover the 150 million kilometres (93,000,000 miles) between us, the Sun, and this speed. Eight minutes is still a lot compared to the five-and-a-half hours required for the Sun’s light to reach Pluto.

11. The human race could be reduced to the size of a sugar cube if all the space in our atoms was removed

Although the atoms that make up our world appear solid, they are actually 99.99999 percent empty space. An atom is composed of a small, dense nucleus, surrounded by electrons and spread over a large area. Because electrons behave like waves, they are particles as well. The crests and the troughs of these waves are what make electrons exist. Instead of being located in a single point, electrons are distributed over multiple probabilities. This is called an orbital. These electrons occupy huge amounts of space.

12. Stomach acid can dissolve stainless steel

The highly corrosive acid hydrochloric acid, which has a pH between 2 and 3, affects the digestion of food. Your stomach lining is also affected by this acid. It secretes an alkali bicarbonate solution to protect itself. It is necessary to replace the lining every day, and it completely renews itself every four.

13. The Earth is a huge magnet

The Earth’s inner core is made up of a sphere filled with solid iron and surrounded by liquid iron. Temperature and density variations create currents in the iron that in turn produces electrical currents. These currents, paired up by the Earth’s rotation, create a magnetic field that is used worldwide by compass needles.

14. Venus is the only planet that can spin clockwise

Our Solar System began as a swirling cloud made of gas and dust. It eventually became a spinning disc with our Sun at its centre. All the planets orbit the Sun in roughly the same direction because of this common origin. They all also spin in the same direction (counterclockwise, if observed from above), except Uranus & Venus. Uranus spins on its back, while Venus spins in the opposite direction. These planetary anomalies are most likely caused by gigantic asteroids that have thrown them off track in the distant past.

15. A flea can accelerate quicker than the Space Shuttle

Jumping fleas can reach heights of eight centimetres (three in) in one millisecond. Acceleration refers to the change in speed over time. It is often measured in ‘gs. One g equals the acceleration caused on Earth by gravity (9.8m/32.2ft per square second). Fleas can experience 100g while the Space Shuttle was able to reach around 5g. This is due to a rubber-like protein that allows it to store and release energy just like a spring.

Continue Reading
Advertisement

Science

AI is changing sea ice melting climate projections

Published

on

By

AI is changing sea ice melting climate projections

The tremendous melting of sea ice at the poles is one of the most urgent problems facing planet as it warms up so quickly. These delicate ecosystems, whose survival depends so heavily on floating ice, have a difficult and uncertain future.

As a result, climate scientists are using AI more and more to transform our knowledge of this vital habitat and the actions that can be taken to preserve it.

Determining the precise date at which the Arctic will become ice-free is one of the most urgent problems that must be addressed in order to develop mitigation and preservation strategies. A step toward this, according to Princeton University research scientist William Gregory, is to lower the uncertainty in climate models to produce these kinds of forecasts.

“This study was inspired by the need to improve climate model predictions of sea ice at the polar regions, as well as increase our confidence in future sea ice projections,” said Gregory.

Arctic sea ice is a major factor in the acceleration of global climate change because it cools the planet overall by reflecting solar radiation back into space. But because of climate change brought on by our reliance on gas, oil, and coal, the polar regions are warming considerably faster than the rest of the world. When the sea is too warm for ice to form, more solar radiation is absorbed by the Earth’s surface, which warms the climate even more and reduces the amount of ice that forms.

Because of this, polar sea ice is extremely important even outside of the poles. The Arctic Ocean will probably eventually have no sea ice in the summer, which will intensify global warming’s effects on the rest of the world.

AI coming to the rescue

Predictions of the atmosphere, land, sea ice, and ocean are consistently biased as a result of errors in climate models, such as missing physics and numerical approximations. Gregory and his colleagues decided to use a kind of deep learning algorithm known as a convolutional neural network for the first time in order to get around these inherent problems with sea ice models.

“We often need to approximate certain physical laws in order to save on [computational] time,” wrote the team in their study. “Therefore, we often use a process called data assimilation to combine our climate model predictions together with observations, to produce our ‘best guess’ of the climate system. The difference between best-guess-models and original predictions provides clues as to how wrong our original climate model is.”

The team aims to show a computer algorithm  “lots of examples of sea ice, atmosphere and ocean climate model predictions, and see if it can learn its own inherent sea ice errors” according to their study published in JAMES.

Gregory explained that the neural network “can predict how wrong the climate model’s sea ice conditions are, without actually needing to see any sea ice observations,” which means that once it learns the features of the observed sea ice, it can correct the model on its own.

They achieved this by using climate model-simulated variables such as sea ice velocity, salinity, and ocean temperature. In the model, each of these factors adds to the overall representation of the Earth’s climate.

“Model state variables are simply physical fields which are represented by the climate model,” explained Gregory. “For example, sea-surface temperature is a model state variable and corresponds to the temperature in the top two meters of the ocean.

“We initially selected state variables based on those which we thought a-priori are likely to have an impact on sea ice conditions within the model. We then confirmed which state variables were important by evaluating their impact on the prediction skill of the [neural network],” explained Gregory.

In this instance, the most important input variables were found to be surface temperature and sea ice concentration—much fewer than what most climate models require to replicate sea ice. In order to fix the model prediction errors, the team then trained the neural network on decades’ worth of observed sea ice maps.

An “increment” is an additional value that indicates how much the neural network was able to enhance the model simulation. It is the difference between the initial prediction made by the model without AI and the corrected model state.

A revolution in progress

Though it is still in its early stages, artificial intelligence is becoming more and more used in climate science. According to Gregory, he and his colleagues are currently investigating whether their neural network can be applied to scenarios other than sea ice.

“The results show that it is possible to use deep learning models to predict the systematic [model biases] from data assimilation increments, and […] reduce sea ice bias and improve model simulations,” said Feiyu Lu, project scientist at UCAR and NOAA/GFDL, and involved in the same project that funded this study.

“Since this is a very new area of active research, there are definitely some limitations, which also makes it exciting,” Lu added. “It will be interesting and challenging to figure out how to apply such deep learning models in the full climate models for climate predictions.”  

Continue Reading

Science

For a brief moment, a 5G satellite shines brightest in the night sky

Published

on

By

An as of late sent off 5G satellite occasionally turns into the most splendid article in the night sky, disturbing cosmologists who figure it in some cases becomes many times more brilliant than the ongoing suggestions.

Stargazers are progressively concerned human-created space equipment can obstruct their exploration endeavors. In Spring, research showed the quantity of Hubble pictures photobombed in this manner almost multiplied from the 2002-2005 period to the 2018-2021 time span, for instance.

Research in Nature this week shows that the BlueWalker 3 satellite — model unit intended to convey 4 and 5G telephone signals — had become quite possibly of the most brilliant item in the night sky and multiple times surpass suggested limits many times over.

The exploration depended on a worldwide mission which depended on perceptions from both novice and expert perceptions made in Chile, the US, Mexico, New Zealand, the Netherlands and Morocco.

BlueWalker 3 has an opening of 693 square feet (64m2) – about the size of a one-room condo – to interface with cellphones through 3GPP-standard frequencies. The size of the exhibit makes a huge surface region which reflects daylight. When it was completely conveyed, BlueWalker 3 became as splendid as Procyon and Achernar, the most brilliant stars in the heavenly bodies of Canis Minor and Eridanus, separately.

The examination – drove by Sangeetha Nandakumar and Jeremy Tregloan-Reed, both of Chile’s Universidad de Atacama, and Siegfried Eggl of the College of Illinois – likewise took a gander at the effect of the impacts of Send off Vehicle Connector (LVA), the spaceflight holder which frames a dark chamber.

The review found the LVA arrived at an evident visual size of multiple times more splendid than the ongoing Worldwide Cosmic Association suggestion of greatness 7 after it discarded the year before.

“The normal form out of groups of stars with a huge number of new, brilliant items will make dynamic satellite following and evasion methodologies a need for ground-based telescopes,” the paper said.

“Notwithstanding numerous endeavors by the airplane business, strategy creators, cosmologists and the local area on the loose to relieve the effect of these satellites on ground-based stargazing, with individual models, for example, the Starlink Darksat and VisorSat moderation plans and Bragg coatings on Starlink Gen2 satellites, the pattern towards the send off of progressively bigger and more splendid satellites keeps on developing.

“Influence appraisals for satellite administrators before send off could assist with guaranteeing that the effect of their satellites on the space and Earth conditions is fundamentally assessed. We empower the execution of such investigations as a component of sending off approval processes,” the exploration researchers said.

Last month, Vodafone professed to have made the world’s most memorable space-based 5G call put utilizing an unmodified handset with the guide of the AST SpaceMobile-worked BlueWalker 3 satellite.

Vodafone said the 5G call was made on September 8 from Maui, Hawaii, to a Vodafone engineer in Madrid, Spain, from an unmodified Samsung World S22 cell phone, utilizing the WhatsApp voice and informing application.

Continue Reading

Science

Fans Of Starfield Have Found A Halo Easter Egg

Published

on

By

Starfield has a totally huge world to investigate, so it was inevitable before players began finding Hidden little goodies and unpretentious gestures to other science fiction establishments that preceded it. As of late, a specific tenable planet in the Eridani framework has fans persuaded it’s a diversion of a fairly sad world in the Corona series.

Players have found that Starfield’s rendition of the Epsilon Eridani star framework, a genuine star framework that is likewise a significant piece of Corona legend, incorporates a planet that looks similar to that of Reach, where 2010’s Radiance: Reach occurred. Portrayed on Halopedia as including “transcending mountains, deserts, and climate beaten timberlands,” Starfield’s Eridani II has comparative landscape to Reach. Unfortunately, nobody’s found any unusual ostrich-like birdies.

As referenced, Eridani II is a genuine star framework out there in the void. It was first expounded on in Ptolemy’s Inventory of Stars, which recorded north of 1,000 universes, as well as other Islamic works of cosmology. During the 1900s, being around 10.5 light-years from our planetary group was assessed. Epsilon Eridani and Tau Ceti—also featured in Starfield and Marathon, another Bungie shooter—were initially viewed by SETI (the Search for Extraterrestrial Intelligence project, which searches the skies for signs of other civilizations) as a likely location for habitable planets that either contained extraterrestrial life or might be a good candidate for future space travel.

Assuming that you might want to visit Eridani II in Starfield, you can do so from the beginning in the game. Beginning from Alpha Centauri (home of The Hotel and other early story minutes in Starfield), go down and to one side on the star guide and you’ll find the Eridani star framework, which is just a simple 19.11 light years away.

Navigate to Eridani II and land in any of its biome regions for pleasant weather and mountainous terrain once you’re there. As certain fans have called attention to, Eridani II’s areas are nearer to what’s found in the Corona: Arrive at level “Tip of the Lance” than its more rich, lush regions displayed in different places of the game’s mission. This is an ideal place for Radiance fans to fabricate their most memorable station (and you will not need to manage the difficulties of outrageous conditions).

You need to add a widget, row, or prebuilt layout before you’ll see anything here. 🙂

Continue Reading

Trending

error: Content is protected !!